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ABOUT CHANGES: SIXTY-FOUR
STUDIES FOR S1X HARPS

L

JAMES TENNEY

A. INTRODUCTION

Y INTENTIONS IN this work were both exploratory and didactic. That s,

I wanted to investigate the new harmonic resources that have become
available through the concept of ““harmonic space’” much more thoroughly
than I had in any earlier work. At the same time I wanted to explore these har-
monic resources within a formal context which would clearly demonstrate cer-
tain theoretical ideas and compositional methods already developed in my
computer music of the early 1960s, including the use of stochastic (or con-
strained-random) processes applied to several holarchical perceptual levels,
both monophonically and polyphonically. The references to the I Ching or
““Book of Changes’ (in the titles of the individual Studies) derive from correla-
tions which were made partly for poetic/philosophical reasons, but also—and
perhaps more importantly—as a means of ensuring that all possible combina-
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tions of parametric states would be included in the work as a whole. I must
confess that I frequently thought of the twenty-four Preludes and Fugues of J.
S. Bach’s Well-tempered Clavier as a kind of model for what I wanted to do with
the work, although it seems highly unlikely that these Studies themselves will
ever betray that fact to a listener. A large mainframe computer was used in the
composition process, generating coded numerical output which was then tran-
scribed into standard musical notation. Two separate FORTRAN IV programs
were involved, the first dealing with characteristics of the set of sixty-four Stud-
ies as a whole, the second determining the details of each individual Study.

B. GENERAL FEATURES

The harps are tuned a sixth of a semitone (16.66 . . . cents) apart, so the ensem-
ble is capable of producing a tempered microtonal set of seventy-two pitches in
each octave. This tuning system (which I call the 72-set) provides very good
approximations of most of the important just intervals within the 11-limit, with
the worst case being the three-cent error for the 5/4 major third (383¢ instead
of 386¢). The relations between some of these just intervals and their nearest
approximations in the 72-set are shown in Table 1 (where interval sizes are
rounded off to the nearest cent).

pc npmbcr
in
ratio size 72-set size error
8/7 231¢ 14 233¢ +2¢
716 267¢ 16 267¢ +0¢
6/5 316¢ 19 317¢ +1¢
11/9 347¢ 21 350¢ +3¢
5/4 386¢ 23 383¢ -3¢
9/7 435¢ 26 433¢ -2¢
4/3 498¢ 30 500¢ +2¢
11/8 551¢ 33 550¢ -1¢
7/5 583¢ 35 583¢ +0¢

(etc.—larger intervals which are octave-complements of these have the same
absolute values for error)

TABLE 1: A COMPARISON OF SOME IMPORTANT JUST INTERVALS
WITH THEIR APPROXIMATIONS IN THE 72-SET
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Each of the Studies is correlated with (and named after) one of the sixty-four
hexagrams in the I Ching or “‘Book of Changes.” This correlation is based on
the configuration of adjacent digrams in the hexagram, as follows: of the three
disjunct digrams in each hexagram, the lower one is associated with pitch, the
middle one with temporal density, and the upper one with dynamic level.
Each digram may take one of four different forms, and each of these is inter-
preted to mean one of four possible “‘states’® in a parameter—low (=—=),
medium (= =), high (==), and full (=—=). Thus, for example, the hex-
agram associated with the fifth Study is number 59 (“‘Dispersion’), which has
the following form:

} upper digram: dynamic state = full
} middle digram: temporal density state = medium

___ } lower digram: pitch state = high

Relative means and ranges corresponding to the four different states are shown
in Example 1.

10 -\ ———————— —_———
o 9
2 8
o HIGH =
'g 7 7+ .3
6 (==)
g ’ MEDIUM = FULL =
= 5 5+.3 5+ .5
o] 4 (== (==
B LOW =
5 .3 3+ .3
e
5 (=—=
£ 2

1
o0 4—mwourorr

EXAMPLE 1: RELATIVE MEANS AND RANGES
CORRESPONDING TO THE FOUR DIGRAM STATES

Actually, the parametric states of each Study are determined by two hex-
agrams—the first one (for which the Study is named) corresponding to the
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parametric states at the beginning of the Study, the second to those at the end.
Where these terminal states differ in a given parameter, a gradual transition
from one to the other is produced by the program using a half-cosine inter-
polation function. At lower holarchical levels, linear interpolation is also used
for such changes of state during the course of a temporal gestalt-unit (or TG).
In both cases, two mean-values are used for each TG—an initial and a final one,
and these terminal values are connected by the interpolation function. For this
purpose, the following formulae are used:

linear interpolation:
v=n+ @ -n) -0 -t

half-cosine interpolation:

_vl+72 71_172 *t—tl)
v, = 5 + p) COS(TC

L-t

where v, is the value in the parameter at time 7, », the initial value (at time )
and », the final value (at time #,).

The first program generates two non-repeating random sequences of hex-
agram numbers, one for initial states, the other for final states, so every possible
combination of parametric states occurs once at the beginning of one of the
Studies, and once at the end of (usually) a different one. ““Changing lines™ for
the initial hexagram are then inferred—such as would effect its transformation
into the final hexagram. Because of this indirect way of deriving changing lines,
they occur more often than they do when the I Ching hexagrams are obtained
in the traditional ways, where the probability of a changing line is one in four,
or 25%; here approximately 50% of the lines are changing.

On the basis of the initial and final parametric states of each Study, the first
program also determines (1) whether it is to be monophonic or polyphonic, and
then (2) the average vertical density ofits elements, (3) the overall duration of the
Study, (4) its average clang-duration, and (5) the initial and final tonic locations
for the Study, as described more fully below. To determine whether a Study was
to be monophonic or polyphonic, it was first considered potentially polyphonic if
at least one parameter was in the ““full”” state, cither at the beginning or at the
end. When this was the case, a weighted random decision was made, with the
weighting adjusted in such a way that approximately half of the sixty-four Stud-
ies would be polyphonic, the other half monophonic.

Both temporal density and vertical density vary exponentially in the Studies—
1.e. the probable distribution of values in these two parameters will be uniform
on alogarithmic scale. Thus, for example, the average temporal density mTd of a
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TG will be computed as mTd = 275, where § is the stochastically controlled
variable, and mS its average value. Similarly for vertical density: mVd = 272, But
while the mean values for temporal density depend directly on input data, those
for vertical density are determined by a formula which relates them to pitch-
range, average temporal density, and the number of polyphonic strata, as
follows:

mZ =5 + (1 — \mSI.6) * nPN95 | /Nt

where mS is the average value of the temporal density exponent and 1.6 is the
maximum value it can have in any Study; #P is one-half of the number of pitches
in the range (always < 195); and Niz is the number of polyphonic strata in the
Study (either 1 or 2). The average vertical density of any Study thus varies directly
with the pitch-range, and inversely with the average temporal density and the
number of strata.

The total duration of each Study varies directly with the average “‘volume” of
the three-dimensional space outlined by the ranges in the three basic parameters
(pitch, temporal density, and dynamic level), and inversely with the average den-
sity of events within this space. This volume is proportional to the product of the
average ranges in the three parameters, and the ““density of events™ to the prod-
uct of (average) temporal density, vertical density, and the number of strata, as:

Volume _  nP*nS*nL

Dur & Density ~ mTd *mVd * Nst

where all variables (except Niz) are arithmetic averages of the corresponding vari-
ables in the initial and final states of the Study. The results of this computation
are later re-scaled to yield a minimum duration of 1'20” and a maximum of
2'40", so the average duration for the Studies in the set is about two minutes.

Each Study is organized into TGs at two holarchical levels between those of
individual elements and the Study as a whole—clangs and segments. Here I have
deliberately avoided TG-articulations at both the sequence- and section-levels, in
an effort to enhance the sense of continuity and the perceptibility of contour at
the segment-level and over the whole Study. The average clang-durations in
individual Studies were made to depend (inversely) on their average densities (as
defined above), and scaled to yield a minimum duration of 2.4//2 = 1.697, and
amaximum duration of 2.4 * \/2 = 3.394 seconds.

The harmonic organization of the Studies will be described in more detail
later, but a brief summary here may help clarify certain other operations carried
out by this first of the two programs. The pitch classes (pcs) available within a
given clang constitute a ““mode”” of (usually) seven different pcs, one of which is
treated as a local or temporary tonic or root. In monophonic Studies, a new root
and a new mode are chosen for each new clang. In polyphonic Studies—whose
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clang-boundaries are not, in general, synchronous—a new root and mode are
chosen whenever the starting time of a new clang in one stratum is later than
half-way through the duration of the concurrent clang in the other stratum—so
pes in the two strata are drawn from the same set more than half of the time. In
both monophonic and polyphonic Studies, the series of root-progressions is
controlled in such a way that each Study ends with a dominant-to-tonic
““cadence” on the same root (the “‘global tonic™) with which it began. Initial
tonic pes are ordered in a way which distributes the seventy-two pcs given by the
tuning system over the sixty-four Studies as uniformly as possible, by simply
omitting every ninth pc in the series from 0 to 71. The final tonic location is
determined in a way which will be explained later.

The output of this first program consists of sixty-four blocks of data, each of
which is used as input to the second program to generate the details of one of the
Studies. Each block includes the following data: the numbers of the hexagrams
defining initial and final parametric states for the Study, its total duration and
average clang-duration, its initial tonic pc and the number of unit steps (in har-
monic space) to the dominant of the ““target tonic,” the number of polyphonic
strata, and the initial and final mean values and ranges for pitch, temporal den-
sity, dynamic level, and vertical density.

C. INDIVIDUAL STUDIES

In generating the output data for an individual Study, the second program
works ““from the top, down.”” That is, it first determines the duration and other
parametric state values for the first segment, then for the first clang in that seg-
ment, and then for successive elements in that clang. When all the elements in
the first clang have been generated, it determines the state values for the second
clang and for its elements. After the last element of the last clang in this first
segment has been generated, the program proceeds to the second segment, its
first clang and the latter’s successive elements, and so on. In the case of poly-
phonic Studies, these operations are carried out ““in parallel,” in such a way that
successive elements’ parametric values are generated alternately from the two
polyphonic strata. This was necessary to maintain harmonic coherence between
the two strata, since pitches in the two strata were to be drawn from the same set
of available pitch classes at any given moment, whenever this was possible.

The number of segments in a Study is approximately equal to the average
number of clangs in a segment, and the average segment-duration approximates
the geometric mean of clang- and Study-durations, although individual segment
durations vary randomly within a range of + 25% of this average duration. For
each segment, an initial and final mean value in each of the other parameters—
pitch, temporal density, dynamic level and vertical density—are chosen within
the available range around the current ““global’> mean for the Study, which is
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determined—as explained earlier—by a half-cosine interpolation between the ini-
tial and final mean values for that parameter given by the input data for the
Study. Each of the terminal mean-values for the sggment is computed as the arith-
metic average of two random values, which results in a tendency toward a “tri-
angular”’ frequency distribution, rather than a uniform one—peaking at the cur-
rent global mean and decreasing linearly toward the upper and lower boundaries
of the current range in that parameter. This was done to lower the probability of
extreme mean values at the segment level, which would have resulted in overly
narrow ranges at the clang level.

The average clang-duration for each Study is given in the input data for that
Study, but—as with segment-durations—the durations of individual clangs were
made to vary randomly within a range of +25% around the average value.
Parametric means for each clang are chosen within segment-means in relation to
the current mean of the segment—as with segment-means in relation to the cur-
rent global mean of the Study—except that here (a) the current segment-mean is
determined by linear (rather than half-cosine) interpolation between the termi-
nal values, (b) only a single value in the parameter is used for a clang (that is, its
parametric mean will be constant throughout the clang), (c) this value is deter-
mined by a single random number (so the frequency distribution of clang-means
would tend to be uniform), and (d) the clang-mean for temporal density is made
equal to the current segment-mean itself, rather than being allowed to vary ran-
domly around that mean, in order to ensure a sufficient range of element-dura-
tions within each clang.

In all of my earlier stochastic music, the articulation of successive TGs was
effected via the ““similarity factor’> only—involving differences in mean-values in
various parameters. In an effort to incorporate the ““proximity factor’ as well, in
the articulation of successive clangs, a new procedure was used here which inter-
poses a delay before the beginning of each new clang (effectively prolonging the
duration of the final element in the preceding clang), according to the following

formula:
Delay = (Dmax — Dur) * (1. — Pdst/Pdmx)

where Dur is the element-duration, Dmax the maximum element-duration pos-
sible in that clang, Pdst the pitch-distance between the two clang-means, and
Pdmx the largest value this can have. The magnitude of the delay is thus deter-
mined by the relative distance between the pitch-means of the two clangs, and
by the difference between the duration of the last element in the first clang and
the maximum element-duration allowed for that clang (given its temporal den-
sity mean and range). The smaller the distance between the pitch-means of the
two clangs (relative to the maximum value it could have, given the available
range of clang pitch-means within the segment at that moment), the longer the
delay is likely to be. Thus, for example, if the distance between the pitch-means
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of the two clangs happens to be zero (i.e. if the two clangs have the same pitch-
mean, which could occur, although it’s not very likely), the amount of the delay
will be such that the (modified) duration of the last element in the first clang will
be equal to the maximum element-duration in that clang. If, on the other hand,
this distance happens to be at maximum, the delay will be zero, and the duration
of that last element will remain unmodified.

The hierarchical (or holarchical), recursive character of the program, already
described for segments and clangs, continues at the element-level, although ele-
ment-durations are generated more simply than were clang- and segment-dura-
tions (as the reciprocal of a temporal density value for the element), and element
dynamic levels are made equal to the clang-mean in that parameter (so dynamic
levels remain constant throughout a clang). The value derived at this level for
vertical density—truncated to the next-lower integer—determines the number of
pitches in the element. As with clangs and segments, parametric values (other
than dynamics) for an element are drawn from the available range around the
clang-mean, but for the pitch-parameter, other, specifically harmonic pro-
cedures intervene here to determine a set of available pitch classes (or pes) before
the actual pitches are selected. These procedures will be described in the section
that follows.

D. HARMONIC PROCEDURES
My intentions in this work, with respect to harmony, included the following:

1) that one of the pcs in every clang should function as a temporary tonic
or root in relation to all the other pcs in that clang—which latter are
interpreted as a kind of temporary ““mode”’ for that clang;

2) that the root pc would change from clang to clang, by means of a root-
progression chosen stochastically from a set of possible root-progres-
sions with pre-set relative probabilities assigned to them;

3) that the pcs in a mode should tend to form relatively compact sets in
harmonic space, both in relation to the other pcs in that clang and to
those in the previous clang, and finally

4) that the “‘random walk’> character of the series of root-progressions
should gradually be ““focused’ in such a way that each Study would
end with a dominant-to-tonic progression to the same root pc with
which it began—and in the same mode.

To achieve these intentions required a careful analysis of the 72-set and its several
possible mappings in harmonic space. For example, the pcs in the 72-set can be
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mapped in pitch-class projection spaces of 2, 3, or 4 (or more!) dimensions,
according to the prime-limit being considered. For Changes, I decided to assume
an 11-limit (five-dimensional) harmonic space for the modes, a 7-limit (four-
dimensional) harmonic space for root-progressions, and to locate the final, ““tar-
get tonic’’ on the same 3,5-plane as the initial tonic (which implies a 5-limit,
three-dimensional space for this relation between initial and final tonic loca-
tions). Examples 2 and 3 show some of these mappings of the pcs in the 72-set,
in pitch-class projection spaces of two and three dimensions (corresponding to
prime-limits of 5 and 7, respectively). Note that—because the 72-set is an equal-
tempered system—its lattice structure is perdodic in harmonic space (no matter
what the dimensionality may be of that space into which it is mapped). That s, it
repeats itself endlessly in all directions. It was decided to use as the target tonicin
each of these Studies one of the many locations of that tonicin the 3,5-plane, ina
direction (in relation to the initial tonic) similar to the direction in which Bach’s
harmonic progressions tend to move in a mapping of the I2-set in harmonic
space—i.e. toward the left along the 3-axis (via descending fifths—e.g. V-I) and
upward along the 5-axis (less quickly, and mostly via the descending minor third
progression—e.g. I-vi). Example 4 shows the configuration of recurring tonics
(in relation to an initial 1/1 or “0”’), in an abbreviated but extended mapping on
the 3,5-plane. The location used for each Study was one of the three indicated by
the arrows—which one of the three depending on the estimated number of
clangs (and thus, the number of root-progressions) in that Study. The numbers
in parentheses give the number of unit steps, along the 3- and 5-axes, respec-
tively, from the initial to the final tonic location.

Each of the sixty-four Studies begins (and thus ends) on a different tonic pc,
and these form an ascending integer series, beginning with 0 (E i —read:
“three-sixths of a semitone below E”) for Study Number 1, and ending with
71 (D¥/Eb ) for Study Number 64, skipping every ninth pe in the series. The
other pcs of the mode associated with a root are chosen from a set of alter-
natives—for each of six ““scale degrees”’ (in addition to the tonic)—given as
input data to the program (but common to all sixty-four Studies). These are
arranged in ““stacked thirds’* order: prime, third, fifth, seventh, ninth, elev-
enth, thirteenth, and they include from three to five alternatives for each
degree above the tonic. These are listed in Table 2, which gives both the pc
numbser in the 72-set and the just ratio or ratios most closely approximated by
that pc (in parentheses). The most important harmonic relationships among
these various alternatives are shown in Example 5, representing their locations
in harmonic space (or, more precisely, in a pitch-class projection space essen-
tially in 7-limit form, but with the additional ratios of 11 interposed along the 3-
axes (and in parentheses)). The choice of a particular pc (or ic—interval class—in
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EXAMPLE 2: THE 72-SET IN THE 3,5-PLANE
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EXAMPLE 3: THE 72-SET IN 3,5,7-SPACE
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relation to a given tonic pc) for each degree is determined by several condi-
tions, some of which might be described as “‘rules,”” while others are more sta-
tistical in character. The rules include the following:

1) in the inital (and thus also the final) tonic set, the fifth is always made
equal to 42 (3/2), and the seventh is allowed to equal 58 (7/4) only if the
third (already chosen) equals 16 (7/6);

2) in the dominant set preceding the final (“‘target”) tonic, the third is
always = 23 (5/4), the seventh always = 58 (7/4);

3) the various “‘thirds’> between adjacent degrees may vary in size only
within specified ranges: from a minimum of 12 (9/8) to a maximum of
26 (9/7) between prime and third or third and fifth, a minimum of 16
(716 or 75/64) and a maximum of 30 (4/3) between adjacent degrees
above the fifth;

4) no “‘mistuned fifths’* are allowed between non-adjacent degrees (as
between the third and seventh, fifth and ninth, and so on)—i.e. any such
interval must either be precisely equal to 42 (3/2) or differ from it by an
interval greater than 3 (a “quarter-tone’’);

5) no octaves (either exact or ‘““mistuned”) are allowed between those
non-adjacent degrees which share a common pc, or approximate that
condition too closely (as between the third and the ninth or eleventh,
the fifth and the eleventh or thirteenth)—i.e. no ““seventh’ larger
than 68 is allowed, and no ““ninth’> smaller than 4. Thus, any inter-
val between non-adjacent degrees must differ from an octave by at
least 4 (two-thirds of a semitone);

6) if the third = 19 (6/5), the fifth must equal 42 (3/2)—thus disallowing
both the “flat> and “‘raised’’ fifths when the third is of the ordinary
minor form;

7) the raised fifth—46 (25/16)—is only allowed when the third = 23 (5/4).
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16 (7/6 or
75/64)

19 (6/5)
21(11/9)

23(5/4)

26 (977)

35(7/50r
45/32)

42 (3/2)

46 (25/16)

clevenths:
28(21/16
33(11/8)
35(45/32
or 7/5)
¢
nnths:
5(21/20 or
135/128)
7(77172,16/15
or 15/14)
9(35/32 or
12/11)
12 (9/8)
16 (75/64
or7/6

thirteenths:

49 (77/48
or 8/5)

51 (105/64
or 18/11)

53 (5/3)
54 (27/16)

56 (55/32
or 12/7)

EXAMPLE 5: HARMONIC RELATIONSHIPS
AMONG ALTERNATIVE PCS FOR THE MODES
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Some of these rules correspond to similar rules for chord-construction in
both traditional and jazz harmonic practice (and I should perhaps add here
something which has not been made explicit before: the pcs of a mode are
often heard simultaneously as well as successively—as “‘chords’ as well as
“‘melodic lines”—thus the ambivalence (which may have been noticed already)
in my use of the terms “‘tonic’” and “‘root”’). Other rules were designed to
avoid certain ambiguities and/or conflicts that might otherwise occur in the
creation of these modes. Although these rules appear to be quite restrictive, a
very large number of modal sets were still possible, but these were further con-
strained by what I have referred to (above) as “‘statistical’> conditions, as
follows:

The pcs that remain available for a given modal degree after testing against
the rules just listed are assigned varying probabilities depending on the sums of
their harmonic distances to pcs already chosen for that clang—and to the pcs
actually occurring in the clang just preceding (I say ““actually occurring
because—due to the random process involved in the selection of pitches in a
clang—it is always possible that one or more of the pcs constituting the mode
will not occur). The relation between these probabilities and harmonic dis-
tances varies according to the modal degree in question (the constraint is
“tighter” for the higher degrees), and whether this was the first clang in the
Study or not (the constraint is “looser” for the first clang), but in general that
relation is an #mverse one. That is, the lower the sum of harmonic distances
between a pc and the others preceding it, the higher its probability of being
chosen—and vice versa. This constraint was made stronger for higher degrees of
the mode (arranged in ““stacked thirds’” order, remember) by raising the har-
monic-distance sum to a power corresponding to the “‘height” of the degree,
as follows:

Pr(j) oc VHdsm(j)?+k-1

where Pr(j) is the relative probability of the jth pc in the set of still-available
pes for that degree, Hdsm(j) equals the sum of that pcs harmonic distances to
preceding pcs, # is the order-number for the modal degree (i.e. # = 2 for the
third, 3 for the fifth, 4 for the seventh, and so on), and £ = 1 for the first clang,
2 for all later clangs. The result of all this is that there will be a tendency for pes
to form relatively compact sets in harmonic space, with this tendency becoming
stronger for higher modal degrees—and conversely, so there is more freedom
for random variation in the lower degrees.

It might be noted that the sets of alternative pcs for modal degrees yield
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seven different kinds of triads, only four of which are familiar in traditional
western harmony (numbers 2, 4, 6 and 7, below):

1) septimal minor 0 /1), 16 (7/6), 42 (3/2)

2) 5-limit minor " 19 (6/5) "

3) 11-limit ““neutral” " 21 (11/9) "

4) 5-limit major " 23 (5/4) "

5) septimal major " 26 (9/7) "

6) augmented " 23 (5/4), 46 (25/16)
7) diminished " 16 (7/6), 35 (7/5)

Another possible form of the diminished triad—0 (1/1), 19 (6/5), 35 (7/5)—was
avoided because the most likely seventh degree with such a triad would have
been 65 (15/8), and the perfect fourth (30 (4/3)) which this forms with 35
would have introduced an unwanted ambiguity with respect to the root. The
sets of alternative pcs for scale degrees were designed to avoid pcs which might
compete with the nominal root, and the perfect fifth and fourth—and even the
(5-limit) major third and minor sixth, though less strongly—have very clear
root-defining effects. Thus, the perfect fourth itself—30 (4/3)—was not
included as a possible eleventh in a mode, and 49 (8/5 or 77/48) was only
included as a possible thirteenth because of its dual character—and harmonic
distance values for this interval were set to correspond to its interpretation as
77148, rather than 8/5. (The same thing was done for the interval formed by
pc 26 (9/7), to avoid its interpretation as 32/25, which—because of the way in
which T calculated harmonic distances (for an explanation of which, see
below)—would have given it more prominence than I thought it should have.)

The seventh-chords which can arise by way of this procedure for con-
structing modes include most of the traditional ones (major, minor, domi-
nant, half-diminished, minor-major, augmented, and so forth, but not the
diminished seventh), plus several others which are of interest, including the
one used by Ives as the primary chord in the “Choral®’ of his Three
Qunarter-tone Pieces—0 (1/1), 21 (11/9), 42 (3/2), 63 (11/6). Ninth-chords
include—again—all of the traditional ones, plus the blues ““flat 7, sharp 9,
and a very interesting group of new ones with pc 9 as the ninth of the
mode. This pc—at the ‘‘quarter-tone”’ position between the 12-set’s minor
and major seconds—functions in the 72-set most frequently as the major
third above the ‘“dominant” 7th—i.e. it can be analyzed as 58 (7/4) + 23
(5/4) = 81 (mod 72) = 9 (35/32). The fact that it occurs in a ““dominant™’-
type pc set more often than the more familiar minor or major ninth is sug-
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gestive: perhaps the latter are merely the best approximations available in
the 12-set for this interval! Finally, the eleventh-chords include a good
approximation of Partch’s ‘‘otonality hexad”’—0 (11 + 0¢), 23 (5/4 -
3¢), 42 (3/2 - 2¢), 58 (7/4 — 2¢),12 (9/8 — 4¢), and 33 (11/8 - 1¢).

The basic formula for the harmonic distance between any two pitches is
Hd(a/b) = klog,(ab), where a/b is the frequency ratio representing the interval
(in its maximally reduced, “‘relative prime> form), and % simply determines the
unit of measurement (with base-2 logarithms, if # = 1, Hd is in “octaves™).
The form used in this program, however, is a bit different, in two respects.
First, it is a measure of the harmonic distance between pitch-classes, rather
than actual pitches. Second, since we are dealing here with a tempered system,
a tolevance rule is invoked, which essentially says that we can assume the simplest
integer ratio within the tolerance range around the tempered pitch to be the
harmonically effective one (that tolerance range is here taken to be + one-half
the size of the smallest step in the tuning system—i.e. + 1/144 of an octave or
8.33...¢). The first qualification means that we are concerned with a distance
not between points in the full, #-dimensional harmonic space itself, but rather
between points in the (»-1)-dimensional ““pitch-class projection space.”® This,
in turn, means that the formula for harmonic distance must be replaced by
another of the form: Hd (@'/6’) = k log,(a't’), where a’ = a/2%, 4" = b/2),
and 7 and j are the largest integer exponents which yield integer values of 2’ and
b'. The second qualification means that —where there are two or more rela-
tively simple integer ratios defining intervals within the tolerance range of a pc,
the one whose ratio-terms’ product is smallest determines the harmonic dis-
tance value assigned to that pc. It has already been mentioned that two excep-
tions were made to this procedure, involving pcs 26 and 49. Pitch-class 26 (@
433¢) approximates both 32/25 (@ 427¢) and 9/7 (@ 435¢), while pc 49 (@
817¢) approximates 8/5 (@ 814¢), 77/48 (@ 818¢), and 45/28 (@ 821¢).
While I wanted both of these pcs to be included among the available alter-
natives (for thirds and thirteenths, respectively), I wanted 26 to be treated as a
9/7, and 49 as a 77/48, so their minimal harmonic distance values were over-
ridden in another part of the program with the higher values. (I see now, in
studying the program again, that the value I assigned to 49 was that of 45/28
rather than 77/48—i.e. log,(315) = 8.30 rather than log,(231) = 7.85—but
fortunately this error turned out to be a small one, with scarcely noticeable
effect on the final results.)

Once the pcs of the mode for a clang have been chosen, the program is
almost ready to proceed to the selection of actual pitches, within the range
already determined for that clang. As at all higher levels, this involves a random
process, but at this level the process is further constrained by two kinds of
probability distributions, one providing some control over the rate of recur-
rence of each pitch, the other correlating modal degree with register. The
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probability of a given pitch being chosen by the random process at any
moment was computed as the product of two probability ““factors™ stored in a
two-dimensional array called PPR(N,L), where N = 1 or 2, and L is an index
for pitch (L = 1for the lowest pitch in the harps’ range, L = 452 for the high-
est). For all values of L, PPR(1,L) was initialized at 1., so all pitches began with
the same relative probabilities. Just after a pitch is chosen for an element,
PPR(1,L) for that pitch is reduced to a very small value, and then increased step
by step, with the generation of each succeeding element (at any other pitch),
until it is again equal to 1.0. The result of this procedure is that the immediate
recurrence of a given pitch is made highly unlikely (although not impossible,
especially in long and/or dense clangs, and in a polyphonic texture), with the
probability of recurrence of that pitch gradually increasing over the next several
elements until it is equal to what it would have been if it had not already
occurred. The other probability factor—PPR(2,L)—is used to effect a correla-
tion between modal degree and register, as shown graphically in Example 6.
Note that while the root or tonic of the mode has an equal probability of
occurring anywhere within the pitch-range of the clang—and all other modal
degrees are equally likely at the upper boundary of the clang’s pitch-range—the
higher modal degrees have low probabilities of occurring in the lower regions
of the clang range (and conversely for the lower modal degrees).

relative probability

< pitch-range of the clang

Y

EXAMPLE 6: CORRELATION OF MODAL DEGREE WITH REGISTER
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Finally, values are determined for the starting-time (or epoch), duration,
pitch(es), and dynamic level of each element in the clang. Element-duration is
computed as the reciprocal of a temporal density value for that element, and
the epoch is given by the sum of epoch and duration values for the previous
element in the stratum (plus the ““delay’> described earlier, when the element is
the first in a new clang). These time values are initially calculated on a virtually
continuous scale—as in Bridge—but (unlike Bridge) I decided in this work to
quantize or “‘rationalize™ these values so they could be represented in the stan-
dard metrical rhythmic notation in the score and parts. This was done as fol-
lows: for the epoch of each element, the program computes (and prints out
with the other parametric values for that element) the absolute differences
between the initially calculated value and both the nearest sixteenth-note and
the nearest triplet eighth-note. It is then left up to the person transcribing the
numerical output data into musical notation to decide which of the two
rational approximations to use, based on the magnitude of the “‘error’
involved, and on the epochs and errors for any other elements which may
begin within the same quarter-note (since the two divisions of the quarter—by
3 and by 4—cannot generally be mixed within a given quarter in our standard
system of rhythmic notation). Example 7 shows an example of a page of out-
put data, with the values for a single element boxed, and the ““error”” values
just described shown circled.

When the ending-time of an element equals or exceeds a predetermined
ending-time for the clang, the program computes a new root pc for the next
clang, and a new mode for that clang. The interval-class (ic) between this new
root and the root of the previous clang thus defines a root-progression, and is
determined as follows: an array is used to store an initial set of relative proba-
bilities for allowable root-progressions (these probabilities are the same for all
sixty-four Studies), as shown graphically in Example 8, and listed in Table 3.
This set of probabilities is conceived as determining a smaller set of six vector
components in a three-dimensional harmonic space, and these, in turn, can be
reduced to a single “resultant’ vector which indicates the direction and aver-
age rate of root-movement through that space—assuming, of course, that a
large number of such root-progressions will be involved. The result is a kind of
directed ““random walk” through the harmonic space.

In order to further ensure not only that this “‘random walk®” will have—
over the long run—the appropriate direction and rate in relation to the location
of the ““target tonic” (or rather, the dominant preceding this tonic), but that
the movement will become gradually more “focused,” and finally arrive at its
goal, the set of individual root-progression probabilities is revised, for each new
clang, according to the actual direction and distance remaining to the target. I
won’t go into more detail here about the mechanics of this process, except to
note that this part of the program turned out to be more complicated than I
had expected it to be, and that it didn’t always work! That is, there always
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EXAMPLE 8: AVAILABLE ROOT-PROGRESSIONS

root-progression root-progression
interval-class probability interval-class probability

0 .00 30 .30

7 .01 42 .10
11 .05 49 .10
12 .05 53 1
14 .04 56 .02
16 .04 58 .02
19 .01 60 .01
23 .03 65 .10

TABLE 3: ROOT-PROGRESSION PROBABILITIES
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remained a certain degree of unpredictability in the final convergence toward
the dominant, such that the intended target was actually missed in about one
out of three runs of the program. When this happened, the output was dis-
carded, and the Study generated again with a new random seed. Since the total
duration and the average clang-duration of each Study were considered charac-
teristic features of that Study, derived by the first program by operations on its
terminal states in the three primary parameters—and not be be altered
arbitrarily or contingently—the series of root-progressions was required not
only to arrive at its target, but to arrive there on time. Such a percentage of
““failures”” is therefore not surprising—given the essentially szochastic nature of
the process. In each Study, the program had four chances to succeed: if it
arrived at the target dominant at the sixth, fifth, fourth, or third clang from
the end, a “‘cadencing’ routine was initiated, which kept it rooted on the
dominant pc, and set the mode in some form of (extended) ‘‘dominant 7th,”
until the next to last (or in some cases, the last) clang, at which point it effected
a progression to the final tonic. The similarities between this procedure and
what might be inferred from many of the cadential passages in Bach’s Preludes
should be obvious—although profound differences will also be evident to any
listener, I am sure.



